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ROUTING  ALGORITHMS: 

 
 

The routing algorithm is that part of the network layer software responsible for 

deciding which output line an incoming packet should be transmitted on. 

PROPERTIES OF ROUTING ALGORITHM: 

Correctness, simplicity, robustness, stability, fairness, and optimality 

 
 

FAIRNESS AND OPTIMALITY. 
 

 

Fairness and optimality may sound obvious, but as it turns out, they are often 

contradictory goals. There is enough traffic between A and A', between B and B', and 

between C and C' to saturate the horizontal links. To maximize the total flow, the X to X' 

traffic should be shut off altogether. Unfortunately, X and X' may not see it that way. 

Evidently, some compromise between global efficiency and fairness to individual 

connections is needed. 

CATEGORY OF ALGORITHM 
 

 Routing algorithms can be grouped into two major classes: nonadaptive and adaptive. 

 Nonadaptive algorithms do not base their routing decisions on measurements or 

estimates of the  current  traffic  and  topology.  Instead,  the  choice  of  the  route  to  

use     to     get     from     I     to     J      is      computed      in      advance,      off-line,  

and downloaded to the routers when the network is booted. 

 This procedure is sometimes called Static routing. 
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 Adaptive algorithms, in contrast, change their routing decisions to reflect changes in 

the topology, and usually the traffic as well 

 This procedure is sometimes called dynamic routing 

 
THE OPTIMALITY PRINCIPLE 

 

(a) If router J is on the optimal path from router I to router K, then the optimal path from 

J to K also falls along the same route. 

(b) The set of optimal routes from all sources to a given destination form a tree rooted at 

the destination. Such a tree is called a sink tree. 

 

 

 

 

(c) A subnet. (b) A sink tree for router B. 

 As a direct consequence of the optimality principle, we can see that the set of optimal 

routes from all sources to a given destination form a tree rooted at the destination. 

 Such a tree is called a sink tree where the distance metric is the number of hops. Note 

that a sink tree is not necessarily unique; other trees with the same path lengths may 

exist. 

 The goal of all routing algorithms is to discover and use the sink trees for all routers. 

 
SHORTEST PATH ROUTING 

• A technique to study routing algorithms: The idea is to build a graph of the subnet, with 

each node of the graph representing a router and each arc of the graph representing a 

communication line (often called a link). 

• To choose a route between a given pair of routers, the algorithm just finds the shortest 

path between them on the graph. 

• One way of measuring path length is the number of hops. Another metric is the 

geographic distance in kilometers. Many other metrics are also possible. For example, 

each arc could be labeled with the mean queuing and transmission delay for some 

standard test packet as determined by hourly test runs. 

• In the general case, the labels on the arcs could be computed as a function of the 

distance, bandwidth, average traffic, communication cost, mean queue length, measured 
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delay, and other factors. By changing the weighting function, the algorithm would then 

compute the ''shortest'' path measured according to any one of a number of criteria or to a 

combination of criteria. 

 

The first five steps used in computing the shortest path from A to D. The arrows indicate 

the working node. 

 To illustrate how the labelling algorithm works, look at the weighted, undirected graph 

of Fig. 5-7(a), where the weights represent, for example, distance. 

 We want to find the shortest path from A to D. We start out by marking node A as 

permanent, indicated by a filled-in circle. 

 Then we examine, in turn, each of the nodes adjacent to A (the working node), relabeling 

each one with the distance to A. 

  Whenever a node is relabelled, we also label it with the node from which the probe was 

made so that we can reconstruct the final path later. 

  Having examined each of the nodes adjacent to A, we examine all the tentatively 

labelled nodes in the whole graph and make the one with the smallest label permanent, as 

shown in Fig. 5-7(b). 

 This one becomes the new working node. 

We now start at B and examine all nodes adjacent to it. If the sum of the label on B and 

the distance from B to the node being considered is less than the label on that node, we have a 

shorter path, so the node is relabelled. 

After all the nodes adjacent to the working node have been inspected and the tentative 

labels changed if possible, the entire graph is searched for the tentatively-labelled node with 

the smallest value. This node is made permanent and becomes the working node for the next 

round. Figure 5-7 shows the first five steps of the algorithm. 

 To see why the algorithm works, look at Fig. 5-7(c). At that point we have just made E 

permanent. Suppose that there were a shorter path than ABE, say AXYZE. There are two 

possibilities: either node Z has already been made permanent, or it has not been. If it has, 
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then E has already been probed (on the round following the one when Z was made 

permanent), so the AXYZE path has not escaped our attention and thus cannot be a  

shorter path. 

 Now consider the case where Z is still tentatively labelled. Either the label at Z is greater 

than or equal to that at E, in which case AXYZE cannot be a shorter path than ABE, or it 

is less than that of E, in which case Z and not E will become permanent first, allowing E 

to be probed from Z. 

 This algorithm is given in Fig. 5-8. The global variables n and dist describe the graph and 

are initialized before shortest path is called. The only difference between the program 

and the algorithm described above is that in Fig. 5-8, we compute the shortest path 

starting at the terminal node, t, rather than at the source node, s. Since the shortest path 

from t to s in an undirected graph is the same as the shortest path from s to t, it does not 

matter at which end we begin (unless there are several shortest paths, in which case 

reversing the search might discover a different one). The reason for searching backward 

is that each node is labelled with its predecessor rather than its successor. When the final 

path is copied into the output variable, path, the path is thus reversed. By reversing the 

search, the two effects cancel, and the answer is produced in the correct order. 

 

Figure 5-8. Dijkstra's algorithm to compute the shortest path through a graph. 
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FLOODING 
 

 Another static algorithm is flooding, in which every incoming packet is sent out on every 

outgoing line except the one it arrived on. 

 Flooding obviously generates vast numbers of duplicate packets, in fact, an infinite 

number unless some measures are taken to damp the process. 

 One such measure is to have a hop counter contained in the header of each packet, which 

is decremented at each hop, with the packet being discarded when the counter reaches 

zero. 

  Ideally, the hop counter should be initialized to the length of the path from source to 

destination. If the sender does not know how long the path is, it can initialize the counter 

to the worst case, namely, the full diameter of the subnet. 

 

DISTANCE VECTOR ROUTING 
 

 Distance vector routing algorithms operate by having each router maintain a table (i.e, a 

vector) giving the best known distance to each destination and which line to use to get 

there. 

 These tables are updated by exchanging information with the neighbors. 

 The distance vector routing algorithm is sometimes called by other names, most 

commonly the distributed Bellman-Ford routing algorithm and the Ford-Fulkerson 

algorithm, after the researchers who developed it (Bellman, 1957; and Ford and 

Fulkerson, 1962). 

 It was the original ARPANET routing algorithm and was also used in the Internet under 

the name RIP. 

 

(a) A subnet. (b) Input from A, I, H, K, and the new routing table for J. 
 

 Part (a) shows a subnet. The first four columns of part (b) show the delay vectors 

received from the neighbours of router J. 

 A claims to have a 12-msec delay to B, a 25-msec delay to C, a 40-msec delay to D, etc. 

Suppose that J has measured or estimated its delay to its neighbours, A, I, H, and K as 8, 

10, 12, and 6 msec, respectively. 
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Each node constructs a one-dimensional array containing the "distances"(costs) to all other 

nodes and distributes that vector to its immediate neighbors. 

 

1. The starting assumption for distance-vector routing is that each node knows the cost 

of the link to each of its directly connected neighbors. 

2. A link that is down is assigned an infinite cost. 

 

Example. 
 
 

 

Table 1. Initial distances stored at each node(global view). 
 
 

Information 

 

Stored at Node 

Distance to Reach Node    

A B C D E F G 

A 0 1 1 ∞ 1 1 ∞ 

B 1 0 1 ∞ ∞ ∞ ∞ 

C 1 1 0 1 ∞ ∞ ∞ 

D ∞ ∞ 1 0 ∞ ∞ 1 

E 1 ∞ ∞ ∞ 0 ∞ ∞ 

F 1 ∞ ∞ ∞ ∞ 0 1 

G ∞ ∞ ∞ 1 ∞ 1 0 
 

 

 
 

We can represent each node's knowledge about the distances to all other nodes as a table like 

the one given in Table 1. 

 

Note that each node only knows the information in one row of the table. 
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1. Every node sends a message to its directly connected neighbors containing its 

personal  list  of  distance.  (  for  example, A sends  its  information   to   its  

neighbors B,C,E, and F. ) 

2. If any of the recipients of the information from A find that A is advertising a path 

shorter than the one they currently know about, they update their list to give the new 

path length and note that they should send packets for that destination through A. ( 

node B learns from A that node E can be reached at a cost of 1; B also knows it can 

reach A at a cost of  1,  so  it  adds  these  to  get  the  cost  of  reaching E by  means 

of A. B records that it can reach E at a cost of 2 by going through A.) 

3. After every node has exchanged a few updates with its directly connected neighbors, 

all nodes will know the least-cost path to all the other nodes. 

4. In addition to updating their list of distances when they receive updates, the nodes 

need to keep track of which node told them about the path that they used to calculate 

the cost, so that they can create their forwarding table. ( for example, B knows that it 

was A who said " I can reach E in one hop" and so B puts an entry in its table that 

says " To reach E, use the link to A.) 

 

Table 2. final distances stored at each node ( global view). 
 
 

Information 

 

Stored at Node 

Distance to Reach Node    

A B C D E F G 

A 0 1 1 2 1 1 2 

B 1 0 1 2 2 2 3 

C 1 1 0 1 2 2 2 

D  2 1 0 3 2 1 

E 1 2 2 3 0 2 3 

F 1 2 2 2 2 0 1 

G  3 2 1 3 1 0 
 

 

 
 

In practice, each node's forwarding table consists of a set of triples of the form: 

( Destination, Cost, NextHop). 

For example, Table 3 shows the complete routing table maintained at node B for the network 

in figure1. 
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Table 3. Routing table maintained at node B. 
 
 

Destination Cost NextHop 

A 1 A 

C 1 C 

D 2 C 

E 2 A 

F 2 A 

G 3 A 
 

 

 

 

 
 

THE COUNT-TO-INFINITY PROBLEM 
 

The count-to-infinity problem. 
 

 

 

 Consider the five-node (linear) subnet of Fig. 5-10, where the delay metric is the number 

of hops. Suppose A is down initially and all the other routers know this. In other words, 

they have all recorded the delay to A as infinity. 

 Now let us consider the situation of Fig. 5-10(b), in which all the lines and routers are 

initially up. Routers B, C, D, and E have distances to A of 1, 2, 3, and 4, respectively. 

Suddenly A goes down, or alternatively, the line between A and B is cut, which is 

effectively the same thing from B's point of view. 
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LINK STATE ROUTING 
 

The idea behind link state routing is simple and can be stated as five parts. Each router must 

do the following: 

1. Discover its neighbors and learn their network addresses. 

 
2. Measure the delay or cost to each of its neighbors. 

 
3. Construct a packet telling all it has just learned. 

 
4. Send this packet to all other routers. 

 
5. Compute the shortest path to every other router 

 
 

Learning about the Neighbours 
 

When a router is booted, its first task is to learn who its neighbours are. It accomplishes 

this goal by sending a special HELLO packet on each point-to-point line. The router on the 

other end is expected to send back a reply telling who it is. 
 

 

(a) Nine routers and a LAN. (b) A graph model of (a). 

(b) 

Measuring Line Cost 
 

 The link state routing algorithm requires each router to know, or at least have a 

reasonable estimate of, the delay to each of its neighbors. The most direct way to 

determine this delay is to send over the line a special ECHO packet that the other side is 

required to send back immediately. 

 By measuring the round-trip time and dividing it by two, the sending router can get a 

reasonable estimate of the delay. 

 For even better results, the test can be conducted several times, and the average used. Of 

course, this method implicitly assumes the delays are symmetric, which may not always 

be the case. 
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Figure: A subnet in which the East and West parts are connected by two lines. 
 

 Unfortunately, there is also an argument against including the load in the delay 

calculation. Consider the subnet of Fig. 5-12, which is divided into two parts, East and 

West, connected by two lines, CF and EI. 

 

Building Link State Packets 
 

 

(a) A subnet. (b) The link state packets for this subnet. 

 Once the information needed for the exchange has been collected, the next step is for 

each router to build a packet containing all the data. 

 The packet starts with the identity of the sender, followed by a sequence number and age 

(to be described later), and a list of neighbours. 

 For each neighbour, the delay to that neighbour is given. 

 An example subnet is given in Fig. 5-13(a) with delays shown as labels on the lines. The 

corresponding link state packets for all six routers are shown in Fig. 5-13(b). 

Distributing the Link State Packets 
 

 

The packet buffer for router B in Fig. 5-13. 
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 In Fig. 5-14, the link state packet from A arrives directly, so it must be sent to C and F 

and acknowledged to A, as indicated by the flag bits. 

 Similarly, the packet from F has to be forwarded to A and C and acknowledged to F. 

 

HIERARCHICAL ROUTING 
 

• The routers are divided into what we will call regions, with each router knowing all the 

details about how to route packets to destinations within its own region, but knowing 

nothing about the internal structure of other regions. 

• For huge networks, a two-level hierarchy may be insufficient; it may be necessary to 

group the regions into clusters, the clusters into zones, the zones into groups, and so on, 

until we run out of names for aggregations. 
 

 Figure 5-15 gives a quantitative example of routing in a two-level hierarchy with five 

regions. 

 The full routing table for router 1A has 17 entries, as shown in Fig. 5-15(b). 

 When routing is done hierarchically, as in Fig. 5-15(c), there are entries for all the local 

routers as before, but all other regions have been condensed into a single router, so all 

traffic for region 2 goes via the 1B -2A line, but the rest of the remote traffic goes via the 

1C -3B line. 

  Hierarchical routing has reduced the table from 17 to 7 entries. As the ratio of the 

number of regions to the number of routers per region grows, the savings in table space 

increase. 
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BROADCAST ROUTING 
 

Sending a packet to all destinations simultaneously is called broadcasting. 
 

1) The source simply sends a distinct packet to each destination. Not only is the method 

wasteful of bandwidth, but it also requires the source to have a complete list of all 

destinations. 

2) Flooding. 
 

The problem with flooding as a broadcast technique is that it generates too many packets 

and consumes too much bandwidth. 

 

 

 

 

Reverse path forwarding. (a) A subnet. (b) A sink tree. (c) The tree built by reverse path 

forwarding. 

Part (a) shows a subnet, part (b) shows a sink tree for router I of that subnet, and part (c) 

shows how the reverse path algorithm works. 

 When a broadcast packet arrives at a router, the router checks to see if the packet arrived 

on the line that is normally used for sending packets to the source of the broadcast. If so, 

there is an excellent chance that the broadcast packet itself followed the best route from 

the router and is therefore the first copy to arrive at the router. 

 This being the case, the router forwards copies of it onto all lines except the one it 

arrived on. If, however, the broadcast packet arrived on a line other than the preferred 

one for reaching the source, the packet is discarded as a likely duplicate. 
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MULTICAST ROUTING 

 

 To do multicast routing, each router computes a spanning tree covering all other routers. 

For example, in Fig. 5-17(a) we have two groups, 1 and 2. 

 Some routers are attached to hosts that belong to one or both of these groups, as 

indicated in the figure. 

 A spanning tree for the leftmost router is shown in Fig. 5-17(b). When a process sends a 

multicast packet to a group, the first router examines its spanning tree and prunes it, 

removing all lines that do not lead to hosts that are members of the group. 

 In our example, Fig. 5-17(c) shows the pruned spanning tree for group 1. Similarly, Fig. 

5-17(d) shows the pruned spanning tree for group 2. Multicast packets are forwarded 

only along the appropriate spanning tree. 
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